

Celcon® acetal copolymer grade M90-45XAP® is a UV resistant, low emission, medium viscosity polymer providing optimum performance in injection molding, and primarily for the interior automotive market. This grade provides overall excellent performance in many applications. Celcon® M90-45XAP® is formulated in custom colors for Toyota interior UV stabilized applications

Product information

Resin Identification POM	100 4040
	ISO 1043
Part Marking Code >POM<	ISO 11469
Rheological properties	
Melt volume-flow rate 8	cm ³ /10min ISO 1133
	°C
Load 2.16	kg
0 0 / 1	% ISO 294-4, 2577
Moulding shrinkage, normal 2.4	% ISO 294-4, 2577
Typical mechanical properties	
Tensile modulus 2650	MPa ISO 527-1/-2
Tensile stress at yield, 50mm/min 64	MPa ISO 527-1/-2
Tensile strain at yield, 50mm/min 9	% ISO 527-1/-2
	MPa ISO 178
3	MPa ISO 178
1,	kJ/m ² ISO 179/1eA
1,	kJ/m ² ISO 179/1eA
	kJ/m ² ISO 180/1A
Poisson's ratio 0.38 ^[C]	
[C]: Calculated	
Thermal properties	
0 1 /	°C ISO 11357-1/-3
,	°C ISO 75-1/-2
,	°C ISO 75-1/-2
Coefficient of linear thermal expansion 110 (CLTE), parallel	E-6/K ISO 11359-1/-2
Coefficient of linear thermal expansion (CLTE), 120 normal	E-6/K ISO 11359-1/-2
Flammability	
FMVSS Class B	ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm 79.4	mm/min ISO 3795 (FMVSS 302)
Physical/Other properties	
Density 1410	kg/m³ ISO 1183

Printed: 2025-05-30 Page: 1 of 6

Revised: 2025-04-17 Source: Celanese Materials Database

Injection

Drying Recommended	no	
Drying Temperature	100	°C
Drying Time, Dehumidified Dryer	3 - 4	h
Processing Moisture Content	≤0.2	%
Melt Temperature Optimum	200	°C
Min. melt temperature	190	°C
Max. melt temperature	210	°C
Screw tangential speed	≤0.3	m/s
Mold Temperature Optimum	100	°C
Min. mould temperature	80	°C
Max. mould temperature	120	°C
Hold pressure range	60 - 120	MPa
Back pressure	4	MPa

Characteristics

Processing Injection Moulding, Extrusion

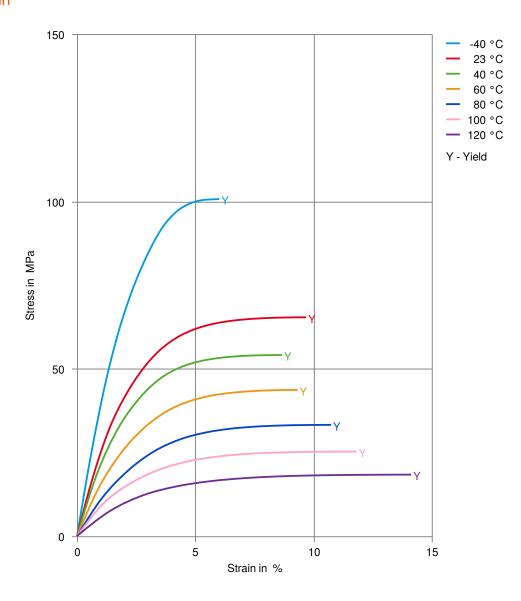
Delivery form Pellets

Special characteristics U.V. stabilised or stable to weather, Low emissions

Additional information

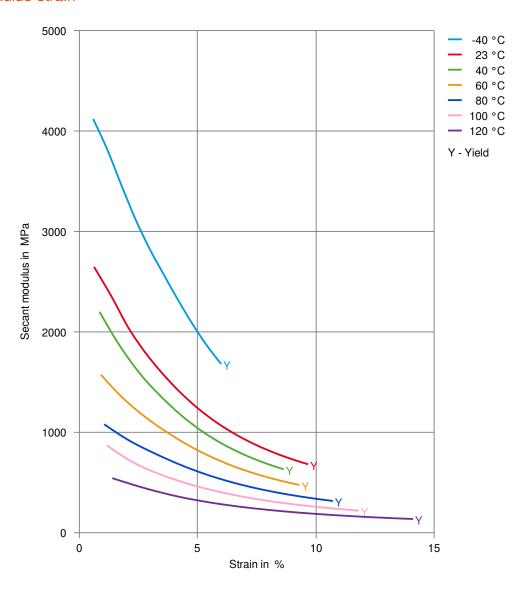
Processing Notes Pre-Drying

Drying is recommended to achieve lowest emission performance. If material contacts moisture through improper storage or handling, drying may be necessary to prevent splay and odor issues.


Printed: 2025-05-30 Page: 2 of 6

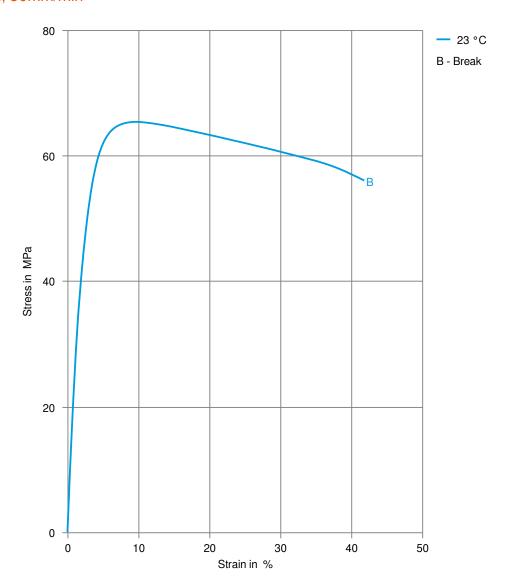
Revised: 2025-04-17 Source: Celanese Materials Database

Stress-strain



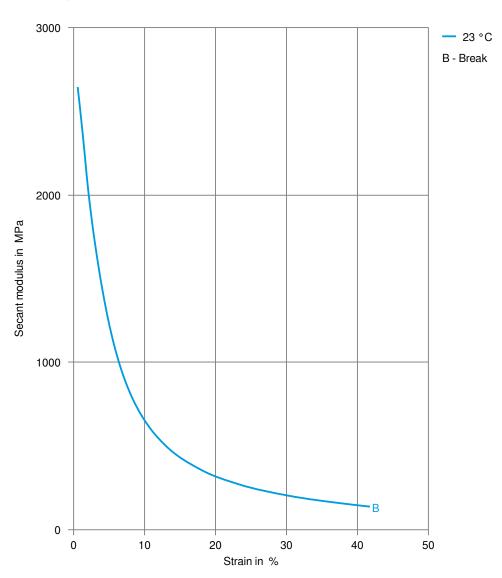
Printed: 2025-05-30 Page: 3 of 6

Secant modulus-strain



Printed: 2025-05-30 Page: 4 of 6

Stress-strain, 50mm/min



Printed: 2025-05-30 Page: 5 of 6

Secant modulus-strain, 50mm/min

Printed: 2025-05-30 Page: 6 of 6

Revised: 2025-04-17 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.